Lecture 3 - 1/23/2024 Last Updated 1/24/2024

1. Binary Search
- Binary Search is a more efficient way to search for a particular
value through a list of values. On top of taking the same inputs
as linear search, an extra condition must be satisfied which is
that the list of values must be sorted prior to performing the
algorithm in order to obtain valid results. Here is the pseudo
code version shown in lecture:

found = "no";
begin = 1;
end = n;
while (found == "no" and begin end) {
m = begin + floor ((end-begin)/2)
if(A[m] == x){
found = "yes";
location = m;
}
if (A[m]>x)
end = m-1;
if (A[m]<x)
begin = m+1;
}
if (found == "no") {
print ("Sorry, " + x + " is not on the 1list");
}else {
print (x + " occurs at position " + location + " on the
list");
}

- The only new component is the function floor which takes an
input and brings it to the smallest whole number within the
range 2.4 goes to 2 while -2.4 goes to -3

- The simple proof for the binary search runtime is as intuitive
as this, out of an N item list, how many splits do we have to
make until we have 1 item remaining:

N
T o
2¥ = N — 10oga(2%) = loga(N)
xlogs(2) = logs(N) — x = loga(N)

1

https://www.codecogs.com/eqnedit.php?latex=1%20%3D%20%5Cfrac%7BN%7D%7B2%5Ex%7D#0
https://www.codecogs.com/eqnedit.php?latex=2%5Ex%20%3D%20N%20%5Crightarrow%20log_2(2%5Ex)%3Dlog_2(N)#0
https://www.codecogs.com/eqnedit.php?latex=xlog_2(2)%20%3D%20log_2(N)%20%5Crightarrow%20x%20%3D%20log_2(N)#0

2. Selection Sort: Selection Sort visualize | Algorithms | HackerEarth

a. For Loop
i. For loops are like while loops except they handle the
counter variable logic for us they allow us to repeat
actions x times
ii. Here is an example of a for loop you’ve seen in lecture:
for (j=i+l;j <= length(A); j++){
if (A[locmin] > A[j])
locmin=j;
}

b. Selection Sort is a sorting algorithm in which you loop through
the entire list, select the minimum and then swap it with the
current element you are at in the list. The algorithm from
lecture is here for your reference:

for (i = 1; i < length(A); i++){
locmin=i;
for (j=i+l;j <= length(A); j++){

if (A[locmin] > A[j])

locmin=j;
}
exchange (A[locmin], A[i]);

}

c. If you are still having trouble understanding Selection sort go
check out the wvisualization at the link above.

3. Insertion Sort: Insertion Sort visualize | Algorithms | HackerEarth

a. Insertion Sort is a sorting algorithm in which you take your
current element in the list and insert it into the proper
position in the sorted portion of the list, the very first
element is considered to be “sorted” for purposes of this
definition. The algorithm from lecture is here for your
reference:

for (j=2; j <= n; j ++){
temp = A[j]
i=j-1
while (i > 0 and A[i] > temp) {
Ali+1]=A[i]
i=i-1
}
Ali+l]=temp

https://www.hackerearth.com/practice/algorithms/sorting/selection-sort/visualize/
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/

b. If you are still having trouble understanding Insertion sort go
check out the wvisualization at the link above.

Lecture 4 - 1/25/2024

1. Sign up for your codio account using the course token bingo-adrian
see lecture 4 ppt on courseworks for more information. Use your
university email.

2. Big-0 Notation and the Analysis of Algorithms
a. We can look at the computational resources needed in order to
execute an algorithm, we use a system known as Big-0O to
systematically rank the use of these resources for different
algorithms.

b. Selection Sort takes
1+243++(n—1)

This is the same as the sum of the first n — 1 numbers which
equals:
n(n —1)
2

This exact form is known as T(n) you can think T for total if
it helps you, with Big-O we use the term with the highest power
to provide an approximation for the magnitude of the runtime so
for selection sort it would be 0(n"2)

c. Insertion Sort has a variable runtime depending on how the items
in the 1list in the best case T(n) = n - 1 and in the worst
case: T(n) = n(n-1)/2

d. The Big-O for Insertion Sort is the same as the Big-0 for
Selection Sort, that is 0(n"2)

e. To review the 4 algorithms you should know by now: Linear Search
O(n), Binary Search O(logn), Selection Sort 0(n”2) and Insertion

Sort O(n"2).

f. T(n) refers to efficiency and O(n) refers to order of growth

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=1%20%2B%202%20%2B%203%20%2B%20%E2%80%A6%20%2B%20(n-1)#0
https://www.codecogs.com/eqnedit.php?latex=n-1#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bn(n-1)%7D%7B2%7D#0

3. Introduction to Programming in Java and the Codio Environment

a. Basic Codio commands:
i. ls - lists all files in current directory
ii. Clear - clears the terminal

b. How to Run Java Programs: You must always compile prior to
execution when you’ve made changes to your program
i. Compile the program: javac filename.java
ii. Execute the program: java filename

c. The Main Method - this is needed for all java programs in order
to run
i. public static void main (String[] args)

d. File name and class name must match, 1t i1s convention for class
names to be camel cased so instead of ‘heydude’ its ‘HeyDude’
i. public class FileName

e. In order to print: System.out.println (textToPrint);

f. There are dataTypes in Java which must proceed the variable name
you write so the compiler knows how to treat it.

i. int - for integer values
1. int a = 2;
ii. double - for floating point numbers
1. double b = 2.0;
iii. String - for sequences of characters

1. String ¢ = “Hello World!”;

